可见,当部分负荷越小,采用压缩机的台数越多时,则运行节能效果也将越显著。同时系统中多机的逐台启动,避免了对电网过大的波动冲击,综合提高了制冷装置运行的经济性、安全性,而当多台中的某台压缩机发生故障时,还可以进行单台维修而系统仍然可以维持运行。

生产实际中各种制冷系统在部分负荷下运行的时间,都占有相当大的比例,因此,采用多机并联型系统对运行的节能也就具有相当大的潜力,值得在设计选择时做深入的分析比较。当然,这也会有其使一次性投资加大,设备所占空间增大等不利的一面。因此,是否选用多台系统以及具体选用多少台数,都应根据用户的实际情况进行深入比较分析,全面衡量后再确定*佳合理的设计选型方案。

一般推荐认为,在较大型制冷设备设计中,确定压缩机配置的台数应尽量少,以简化系统和便于操作管理,但总台数不宜少于2台,以保证热负荷变化时冷量的有效调节,以及检修时单台维持系统的运行。

1.2换热器的选择

1.2.1冷凝器

空气冷却式冷凝器,由于空气的传热较差,其冷凝温度常较高,使冷凝压力升高,制冷机效率降低,耗能增加。因此,其比较适用于夏季室外温度不太高地区,或冷凝压力较低的制冷剂。其*大的优点是不需要冷却水,特别适宜于缺水地区或供水困难地区使用。

自然界水温一般较低,并且水的传热性能优良,故水冷冷凝器的冷凝温度比较低,这对压缩机的制冷能力和运行的经济性都比较有利,目前在工业制冷系统中得到了广泛应用,为节约水资源,普遍采用冷却水塔装置,使冷凝器的出水得到冷却降温,以供水冷冷凝器重复循环使用。

蒸发式冷凝器,其利用了冷却水蒸发时的气化潜热,来吸收制冷剂放出的热量,故实现了冷凝热量的转移只需少量的冷却水。一般水冷冷凝器中1kg冷却水能带走16.75~25.12 kJ的热量,而1kg水在常压下蒸发能带走约2428 kJ的热量,因而蒸发式冷凝器理论耗水量约为一般水冷式冷凝器的1%。实际上,考虑到吹散损失、排污等损耗,其耗水量也大约只有一般水冷冷凝器的5%~10%。

蒸发式冷凝器由于省去冷却水在冷凝器中显热传递阶段,使冷凝温度有可能更接近空气的湿球温度,从而降低了压缩机能量消耗。通过对冷藏库的研究分析表明,冷凝温度与空气湿球温度的偏差在8.3℃以内是比较实际和经济的。在这样条件下,采用蒸发式冷凝器系统与冷却塔和管壳式冷凝器相结合的系统相比,压缩机的动力消耗,可节约10%以上;与采用空冷式冷凝器系统比较,可节约30%以上。由于其本身起到了冷却塔的作用,故其初期投资实际还会低于水冷冷凝器和冷却塔的综合初期投资。

冷凝器换热面积是设计选型中的另一重要内容,设计中应充分考虑到国内制冷装置的设计制造水平以及用户在使用中维护管理意识水平普遍较低的现状,适当选择较大的冷凝面积还是比较经济实用,比较符合我国国情的。

综上,各种冷凝器各有其优缺点。对于一定的应用场合,选用不同冷凝器的直接后果是冷凝温度与压力不同,制冷机运行的经济性不同。但目前国内大多用户在实际选择冷凝器时,往往对不同冷凝器运行能耗的差异影响考虑很少。实际上,冷凝器的选择对制冷装置能耗的影响,必须引起我们的高度重视!在设备的设计中应对采用不同冷凝器的不同方案进行全面的技术经济分析,综合考虑初期投资、安装位置环境、操作维护等各方面因素,然后选择*佳合理方案。

1.2.2蒸发器

在实际工程设备设计中,蒸发器的选择主要考虑蒸发器类型和传热面积两方面因素。近年来,对于换热器的设计选型有一个一致的倾向,即采用较小的传热温差,当传热量一定时,传热温差减少就必须增大传热面积,传热面积增大就意味着增加投资和减少运行费用。随着能源短缺矛盾的突出,世界各国都对节能提出了更高的要求,并采取了相应的政策措施,因此,适当增加投资,可以减少常年运行的能耗,达到节能的目的,且随着运行费用的上升,由于节能而增加的投资回收期也将逐渐缩短,*终得到较高的经济效益。换热器对运行费用的影响日益受到重视,板式换热器等各种新型高效换热器正在不断被开发、应用。

1.3节流装置的选择

节流装置没有外功输出,因而没有效率消耗的概念,但是节流装置的工作特性,直接影响到制冷装置的制冷性能,影响到装置运行的效率和能耗水平。热力膨胀阀选择不当,将造成蒸发器的蒸发面积利用率下降,制冷装置的效率降低,能耗增加等,甚至产生湿冲程对压缩机产生致命的损坏。

正确地选择调节膨胀阀是制冷装置节能中的重要一环。热力膨胀阀的容量是随工况而变的,选择容量时应根据生产厂家提供的热力膨胀阀性能表进行选择,但必须注意,还应该全面考虑热力膨胀阀的平衡方式,蒸发温度、阀前后压差和阀进口液体温度等因素对膨胀阀容量的影响进行修正,这样才能保证热力膨胀阀与制冷装置很好地匹配,使制冷装置处于*佳的运行状态,达到高效节能的目的。

目前国内大多用户及工程商在制冷设备、工程设计施工中,都或多或少存在注重压缩机主机而忽视辅助设备的观念做法。在实际选择换热器、节流装置等制冷系统配件时,往往很少考虑这些辅助配置引起制冷设备运行能耗的差异及对运行安全的影响。在我国制冷系统中辅助设备的配置性能明显落后,并也因此制约了压缩机主机性能的充分发挥,甚至对压缩机主机会形成致命的事故隐患。在重视压缩机的同时,换热器、节流装置等辅助配件的合理优化选择对制冷设备能耗的影响,必须引起我们的高度重视!

2.制冷系统主要运行参数的节能控制调节

在实际的制冷设备及系统工程运行中,我们认识到不仅应该把制冷系统调整到合理的运行范围,满足制冷工艺的要求,维持其安全正常运行,而且还应该并可以进一步将制冷系统调整到*佳运行状态,实现高效节能的运行目的,提高制冷设备运行的节能水平。

2.1蒸发温度和蒸发压力

在制冷设备的设计中,提高蒸发温度将使制冷系统的压缩比降低、功耗减少,这对节能是十分有利的。问题是蒸发温度取决于被冷却对象,调整蒸发温度必须以不影响被冷却对象的制冷工艺要求为前提。但在制冷装置的操作调节中,应注意观察,及时采取相应措施,如适当除霜、适当增大供液量、对蒸发器进行放油除污垢清理、对压缩机实施有效能量调节等,使蒸发温度稳定在设计温度,避免蒸发温度不必要地过低还是非常必要的。

从节能的角度来讲,适当地提高蒸发温度是经济合理的,计算表明当用-25℃的库温代替-30℃库温时,由于蒸发温度升高,将节约电能达9.8%。因此,对于贮存期较短,质量对低温要求不高的情况,可以适当地提高蒸发温度,达到节能的效果。另外一般制冷装置都按满负荷进行设计,而实际在满负荷运行的时间并不长,大部分时间是在小于设计负荷的条件下运行。在部分负荷即耗冷量减少时,提高蒸发温度,可以利用减小蒸发器的传热温差,达到同样的降温效果。例如,当冷凝温度为38℃时,制冷系统的蒸发温度-33℃;当耗冷量减少为原设计的50%,原蒸发器传热温差由10℃减少为5℃,库房仍利用原有设备,使库温维持在-23℃,但此时蒸发温度提高为-28℃,计算表明节能效果可达15%。

2.2冷凝温度和冷凝压力

冷凝温度过高,将引起压缩机排气压力过高,排气温度升高,这对压缩机的安全运行十分不利,容易造成事故;同时使制冷装置效率降低,能耗增加。从节能角度,在制冷设备设计时应适当选取较高的冷凝温度,即配置较大的冷凝换热面积,达到实际节能运行的目的。

从操作调节的角度,应控制制冷设备在尽可能低的冷凝温度下运行,以提高制冷效率,降低运行费用。冷凝温度决定于冷却介质的温度、流量、流速、冷凝面积、压缩机的排气量以及空气湿度、油污、水垢等影响冷凝器传热效率的各种因素。要使冷凝温度尽量低,主要从两方面入手:一是保持换热面积的清洁,消除影响热交换的因素,即及时除垢、放油、排除不凝结气体;另一方面,就是控制冷却介质的流量、流速,保证冷却介质均匀地流过换热面积;还要特别注意冷却水在冷凝器中分配的均匀性。在系统设备部分负荷下运行时,应特别注意同时对应控制调节冷凝系统的水泵或风机负荷,避免无效的换热功耗。因为制冷设备的总能耗包括了压缩机的能耗和换热器水泵和风机的能耗。

2.3液体过冷度和吸气过热度

液态制冷剂节流后进入两相湿蒸汽区,此时制冷剂的干度越小,其在蒸发器中气化时的吸热量即制冷量越大,循环的制冷系数亦越高。在一定的冷凝温度、蒸发温度下,采用使节流前制冷剂液体过冷的方法可达到减小节流后制冷剂干度的目的,提高制冷循环的制冷量。

通常情况下,假定冷凝器出水温度比冷凝温度低3~5K,冷却水在冷凝器中的温升为3~8K,因而冷却水的进口温度比冷凝温度低5~13K,这就足以使制冷剂出口温度达到一定的过冷度。在卧式壳管冷凝器中,如果冷凝后的液体不立即从冷凝器的底部排出,而是积存在冷凝器内部,这部分液体将继续把热量传给管内的冷却水和周围介质,排出时便可获得一定过冷度。

过冷度的获得产生并不产生压缩机耗功的增加,这就意味着过冷度必定导致设备系统制冷系数的增加,提高制冷设备运行的经济性。研究计算表明,在冷凝温度40℃,蒸发温度5℃工况条件下,5K的过冷度,会使R22制冷设备制冷量增加4.27%,输入功率无变化,COP值提高4.27%。同时,一定的过冷度还有效防止了液态制冷剂在从冷凝器到节流阀间的管道中发生部分气化造成制冷量下降和膨胀阀故障。

相比较对于R22制冷设备而言,吸气过热度的影响就更为复杂了,因为吸气过热度在有效改善提高压缩机的容积效率和系统单位质量制冷量的同时,亦不可避免地增加了压缩机吸气的比容、排气温度、耗功和冷凝器的热负荷。尽管其综合影响还是会使制冷量随着过热度的增加有所增加,但设备系统的制冷系数则是随之降低的。这虽似与设备的节能运行有相驳之处,但在制冷设备,特别是在低温制冷设备中,吸气温度过低会使压缩机产生严重结霜,润滑条件恶化。在湿冲程下,压缩机运行的容积效率大幅降低,指示效率、机械效率及电效率均会有所减低,从而使压缩机的COP值会有更大幅度的下降。更为甚者,湿冲程极易产生液击对压缩机产生致命的机械损伤。

可见,压缩机的吸气温度既是运行效率和能耗水平的标志,更是设备系统安全正常运行的标志。所以,在实际运行操作中应保持密切的监控,及时调节,使之保持在合理的范围之内。维持适当合理的吸气过热度,来保证制冷设备更为安全可靠、高效节能地经济运行。

当然,上面提及的吸气过热度,均是指发生在蒸发器本身,或安装于被冷却间内的吸气管道上,过热所吸收的热量来自于被冷却的空间介质,即吸气过热产生了有效的制冷效果。那些未对被冷却空间介质产生制冷效果的无效过热,则只单方面增加了压缩机的能耗,为有害过热应严格采取保温措施有效避免,否则会使制冷设备的运行经济性恶化。

除此之外,充分利用昼夜温差引起的夜间热负荷降低,冷凝温度降低及夜间低谷电网,尽可能使制冷设备在夜间运行;在制冷环境中优化设计均匀的气流组织;采用多级分段制冷工艺使制冷设备在各个时段中采用不同的运行参数,降低传热温差,利用连续变温调节时制冷系数大的原理,以不增加投资实现实际制冷冻结过程的节能也都具有较为明显的经济效益。

综上所述,随着能源问题的日益突出,对节约能源提出了更高的要求,世界各国都相应制定了新的能源经济政策措施,我国也已在工作报告中制定了单位GDP能耗降低20%的能源控制目标。因此,总体上讲,在制冷设备的设计施工中,适当增加初期一次性投资,以降低制冷设备运行的能耗,达到高效节能的目的,降低设备运行费用,是应当采用的设计思想。随着能源价格致使设备运行费用的上升,由于节能使增加的初期投资回收期逐渐缩短,可获得较高的综合经济效益。

另外,目前我们对制冷系统操作调整的重要性认识不足,制冷设备运行维护管理情况普遍较差。存在技术力量薄弱,对制冷设备技术经济运行管理的观念意识淡薄。这些更需要我们业内各方面共同努力,加强对系统的合理优化设计和运行的精心控制调节重要性,以及实现制冷设备安全高效节能目的的宣传教育和贯彻执行工作。

上一篇: 活塞式制冷压缩机使用R404A制冷剂的注意事项 下一篇: 如何控制和降低冷库的经营成本